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The question of the mechanical state of media undergoing phase transformations is of great practical
value. It has long been of interest and goes back to the first observations of discontinuities in the soil
during its freezing and drying, to the description of fissuring of metal, glass and ceramic items during
their molding, etc. The separation of the stresses into phase stresses connected with the change in density
of the medium during transformation and thermal stresses due to the existence of a nonuniform tempera-
ture field and the thermal effect of the transformation was contained in the first qualitative investigations.
Subsequent quantitative solutions relied upon known physical models of solidification of media. Thus, in
the 1930's, Hirone [1, 2] undertook the analytical computation of the temperature stresses in a solidifying
metal on the basis of a model of layer-by-layer growth of an elastic body.

In later investigations, attention was turned to the construction of physical models ofthe phenomenon;-ﬁ"v ‘

the description of thermoplastic flow of crystalline materials, the determination of conditions for growing
dislocation~free crystals, the description of the process of crack formation and growth, the formulation of
physical strength conditions for solidifying bodies, ete., were taken into account. The main contribution

to the formulation and solution of many of these questions was made by Indenbom [3-8]. Methods of com-
puting the temperature stresses in solidifying bodies were developed in parallel within the framework of
the mechanics of continuous media,and the class of physical models describing the phase-transformation
process was extended. A brief survey of research in this area is presented in [9]. Kosevich and Tanatarov
[10] developed an appropriate analysis of phase stresses,

The one-dimensional symmetric problem of the elastic stress state of a solidifying infinite plate is
examined in this paper under the assumption that the solidifying layer is prevented from bending and is
free of external forces. In contrast to the preceding papers, the influence of different heat-exchange con~
ditions on the plate surface being cooled on the distribution of the originating stresses is analyzed herein.
Approximate results are obtained.

1. Let us consider a semi-infinite domain extending in the x direction and occupied by a fluid at the
solidification temperature T}. One of the heat-exchange conditions corresponding to the presence of a
constant temperature or one decreasing linearly with time, decreasing exponentially, and also varying
periodically, is realized on the x =0 surface at the initial time. The presence of a constant and a linearly
time-varying heat flux and heat exchange according to Newton's law is also considered.

Let us consider the solidifying layer to satisfy the model of an elastic body, and the thermophysical
and mechanical characteristics of the medium to be independent of the temperature. Such assumptions
correspond to the Hirone—Indenbom—Rider model of "instantaneous solidification.” To simplify theprob-
lem, let us take fixing conditions for which the growing layer is prevented from bending, which is realized,
in particular, during symmetric solidification of the body or when it is grown on a rigid substrate. Using
this model, let us later formulate the problem under consideration within the framework of the theory of
uncoupled thermoelasticity, by taking into account that the sole nonzero components of the stress tensor
which satisfy the equilibrium, and compatibility equations, and the boundary conditions are Oyy =0zz=
o(x, t) and the nonzero strain tensor components Eyy =Ezz =g (t); €4 —EX, t). We have
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Here T is the temperature, a is the temperature conduction, A is the heat conduction, C is the spe-
cific heat, Q is the heat of phase transition, p is the density, Ty is the solidification temperature, T is
the temperature on the surface being cooled, k, m, qy, w are constants, oy is the heat-exchange coefficient,
t is the time, AT is the amplitude of the temperature fluctuations, x is the running coordinate, £ is the
coordinate of the phase boundary, T is the time at which a fluid point is attached to the phase boundary,
E is the elastic modulus, and « is the coefficient of linear expansion.

The elastic problem (1.11)-(1.13) is solved in a quasistatic formulation by using the temperature
field obtained independently on the surface being cooled as the loading function in each particular case
of heat exchange.

2. The approximate solution of the thermal problem corresponding to the case of a periodically
varying temperature (1.1)-(1.3), (1.6), is found by following the method elucidated in [11]. Thus, the tem-
perature field in the solidifying layer, and the law of phase boundary motion, should be found in general
form from the equations ‘

Qp hd 1 dn+1 :
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Limiting ourselves to just the first terms of the series and taking condition (1.6) into account, we obtain

Th~T:%(1-%)§§~1 §2=P2(1+6512twt)4at,

where

C (T —Ts)

—g

We find the solution of the appropriate elastic problem (1,11)-(1.13) in conformity with [9], by using the
temperature field presented above and the law of phase-boundary motion,
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where 6=t/t;,, 0=6=<1, t, is the time corresponding to the width of the solidifying part of the plate. ‘Hence-
forth, o will be understood to be the dimensionless quantity o*C (1—v)/0EQ.

+5

Shown in Fig. 1 is the stress distribution in the solidifying layer, computed by means of (2.3), under
the following conditions:

PP=01,8=04, wty= 1)-%, 2) n, 3) >, 4 2n,

It is easy to see that the stress distribution originating is sigpn-varying, The stresses on the surface being
cooled are hence always negative and tend to infinity. The plastic compression domain is evident here.

If it is considered that 6=0 (AT =0), then the plate surface being cooled is maintained at the constant
temperature T=T;<Ty. Under these conditions, the law of phase-boundary motion reduces to a simplified
modification of the classical solution of the Stefan problem (1.1)-(1.4),

20 (Ty—Ty)
2 __ h 0
g = —g &
At the same time, the general solution (2.3) takes a form agreeing with the solution presented in {9] for
P 1

(p, : ) (1n.§_ 245+ 2) | @.4)

Curve 1 in Fig. 2 corresponds to this stress distribution under the conditions p?=0, 1, The coordi-
nate of the maximal tensile stresses in the solidifying layer xp, follows from the condition 8x0=0 and
equals xp,/£ =0.5 in the case (2.4).

3. Inthe case of a linearly decreasing temperature, the approximate solution of the thermal problem
(1.1)-(1.3), (1.5) is found from the general solutions (2.1}, (2.2) under constraints analogous to those taken
in Sec. 2,

TW—T =9p2—g—(1——-z—)]/1—m2§2, (3.1)
B = p*. dat + 2p*miat?, 3.2)

2 KC g Th "0
where m = 550" 2p? = 0 C.

" Let us also note that analogous heat-exchange conditions are also realized for the periodic cooling
mode in the plate solidifieation stage when wt,= 7/2(2n—1), n=1, 2,.... Using (3.1), (3.2), let us write
the solution of the corresponding elastic problem,

o(p.mt, £) = p [2 (i=me (1 &) —2(vi—me-

;Vi—sz;z—:)——;—

For m%2<« 1 this solution can be simplified:
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If m=0, then (3.3) agrees with (2.4). The coordinate of the maximal tensile stresses for the sim-~
plified distribution (3.3) follows from

. . ng’fl‘
$+m2§2(1—21§’—")+————E =2.
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m
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The stress distribution (3.3) is presented in Fig. 2 (curve 2) for p?=0.1; mf =0.705.

128



S

]

S ol(1-v/
o £Q

: /o 87
W
B

is}
¥y

<

—0,02

-0,02

T
N

B/ o]

0.4 a8 . 0,4
Fig. 1 Fig. 2

K

&g

4. The exact solution of the thermal problem in the case of an exponentially decreasing temperafure
(1.1)~(1.3), (1.7) is according to [12]

rir =il 1)
E=mat, m = const.
The solution of the corresponding elastic problem results in the following thermal stress distribu-
tion in the solidifying layer:

o (m§, -z_) = exp [mg (1 _ @.1)

<ml 8

)] —1—ln%+ Ei(mg _g_) — E; (mb),

y
where E;(y) = j ‘ﬂy-—(y-)dy.

We have on the plate surface being cooled
o(mt, 0)=exp(mt)—1+C,+In(mE)—E;(md),
where C;=0.577 is the Euler constant.

For small values of the parameter mé < 1 we have o(mé, 0) -»1/4(m.§)2, and, thereforé, the greatest
tensile stresses are found on the plate surface being cooled.

5. The approximate solution of the problem corresponding to the case of a constant heat flux (1,1)-
(1.3), (1.8) can be found by again returning to the method elucidated in [11]. The temperature field is
hence represented by (2.1), and the law of phase-boundary motion is found from the equation

< 1 a1
Eo T an ) g o= ma. (6.1)

—
Limiting ourselves to two terms of the series in (2.1), and to one in (5.1), we obtain
TheT =2 |(1— 2\ (4 =ype
=t = (- )% -1y,
0C
AQ

The simplified temperature field, used in the preceding section when mé[ 1~ (x/£)] < 1,yieldsthese
solutions of the thermal problem.

E=mat, m=

The solution of the elastic problem for this case is

a(mg, -g—) = ’1‘%_2(1 ~4Z 43 g_) (5.2)
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The greatest tensile stresses o(m¢, 0) =1/4(m¢)? originate on the plate surface being cooled (x=0).
The coordinate of the maximum eompressive stresses corresponds to the quantity xp,/%=2/3,

The stress distribution found by means of (5.2) for m& =0.705 is shown in Fig. 2 (curve 3).

6. We find the approximate solution of the thermal problem in the case of a linearly decreasing heat
flux (1.1)-(1.3), (1.9} by using (2.1) and (5.1) analogously to the solution examined in the previous section.

We have
‘ _ z §E 1 z 2§2-§2 1 z 35’%]
T, — To[(i“_g’)7+7(1_?)?+'€(1_€)a_f’

t= mat(l-—z—kq—%\), m=35-

The solution of the elastic problem yields the thermal stress distribution in the solidifying layer,

ome, ) = —mme (1= Y F)yi—me + 51—
—4(1 — nmg) —g— + e-g;—-.?.nm‘é (—g—-+ -g + —g— -"g—:)], ' (6.1)
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where n =

The maximum tensile stresses

o(mt,0) = "7 (1— g ).

originate on the plate surface being cooled.

In the limit case n=0 (k=0) the solution (6.1) agrees with the solution (5.2). The stress distribution
computed by means of (6.1) for m£ =0.333 at n=0.1 is shown in Fig. 2 (curve 4).

7. Inthe case of heat exchange according to a Newton law, we find the temperature field and law of
phase~boundary motion by solving the thermal problem (1.1)-¢1.3), (1.10). To do this, we again use the
results from [12]. The temperature field is given by (2.1), and we have the following equation for the law
of phase~-boundary motion: '

ﬁiﬂ, gk Bt ] Th—Te (1.1)
a® dt1.i -(2")! Qp (2"——1)1 Q ’

Limiting ourselves to the first terms of the expansions (2.1) and (7.1), we obtain
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The solution of the elastic problem for this case reduces to the following temperature stress distribu-~
tion in the solidifying layer:

z 2m§ z t-HmE 2 i
,=—|=p*}. > 11— == 1 E 1 _ ! (7.2)
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1t follows from (7.2) that compressive stresses whose magnitude equals

o (b mt, 0) = p*| pr —In (1 + mb)|

originated on the plate surface being cooled, and the value of the maximal tensile stress coordinate in the
solidifying layer is determined by the relationship »

Po bl VER) -l Hio VR

The stress distribution computed by means of (7.2) for p®>=1.0 and mf=0.333 is presented in Fig, 2
(curve 5).
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8. M follows from the results presented that the heat-exchange conditions substantially affect the
nature of the temperature distribution in the solidifying plate and the associated law of phase-boundary
motion, This has a number of -consequences; primarily, the presence of qualitative changes in the origi-
nating thermal stress distribution. In this sense, the heat-exchange conditions considered can be separated
into two groups according to a criterion governing qualitatively identical pictures of the stress state of
the growing plate.

Among the first should be the case of heat exchange according to the laws (1.4)-(1.6), {1.108). The
effective stress distribtuion under these conditions is characterized by the presence of a compression
domain at the surface being cooled, where o] x=y " ~ . Here the most general case is a periodic temper-
ature mode at the plate surface being cooled, which corresponds to (1.6), in which the heat-exchange con-
ditions with a constant temperature and temperatures decreasing and increasing linearly according to a
parabolic law are contained as particular cases. Inthis connection, let us examine some singularities in
the stress distribution which are characteristic for the periodic cooling mode. Thus, the stress state of
the plate at the start of the period of temperature variation is characterized by two zones (see Fig. 1,
curve 1): one growing at the phase boundary and a compression zone at the surface being cooled. No
qualitative changes in the stress distribution (curve 2) originate during a time equal to half the period
of temperature variation, as compared with the beginning of the period although the maximal tensile
stresses grow, A stress redistribution with the formation of a small compression domain at the phase
boundary (curve 3) occurs in the next quarter of the period. Finally, the picture changes abruptly during
the last quarter, the compression zone originating broadens and shifts to the middle layer of the solidify-
ing part of the plate, andanarrow, growing domain with stresses of considerable magnitude appears near
the phase boundary. As a whole, alternation of elastic compressive and tensile zones whose width and
maximal effective stresses depend on the magnitude of the parameter 8, is characteristic of the stress
state at this time. For small 6 the influence of the temperature fluctuations on the stress distribution
is negligible. As &> 1 grows, the originating stresses turn out to be proportional to 8. No qualitative
changes in the stress state of the growing plate originate for these changes in the quantity 6. Variation
of the other external parameter, the frequency of the temperature fluctuations, results in the following
singularities: the stress distribution tends to the expression (2.4) in the case w — = and the number of
compressive and tensile zones in the solidifying layer grow correspondingly for w-+w,

The case of heat exchange according to a Newton law which abuts the first group is characteristic
in that the stress distribution (7.2) tends to the distribution (2.4) as the heat-transport coefficient grows
(m —, i.e., when ideal contact conditions between the surface being cooled and the surrounding medium
hold). On the other hand, no stresses originate for m =0,

Realization of the heat~exchange conditions corresponding to the laws (1.7)-(1.9) yields another
qualitatively coincident picture of the stress distribution in the solidifying plate. Here the tensile stress
zone adjoins the cooled surface, and 2 compressive domain originates at the phase boundary, It is char-
acteristic that the tensile stresses on the plate surface being cooled are finite. The most general case
is hence that with the exponentially decreasing temperature (4.1).
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