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The quest ion of the mechanica l  s tate  of media  undergoing phase  t r ans fo rma t ions  is of g rea t  p rac t i ca l  
value. It has long been of in te res t  and goes  back  to the f i r s t  observa t ions  of discontinuit ies  in the soil 
during its f reez ing  and drying,  to the descr ip t ion  of f i ssur ing  of metal ,  g lass  and c e r a m i c  i t ems  during 
the i r  molding, e tc .  The separa t ion  of the s t r e s s e s  into phase  s t r e s s e s  connected with the change in density 
of the med ium during t r a n s f o r m a t i o n  and t h e r m a l  s t r e s s e s  due to the exis tence  of a nonuniform t e m p e r a -  
ture  field and the t he rm a l  effect  of the t r ans fo rma t ion  was contained in the f i r s t  qual i tat ive invest igat ions.  
Subsequent quanti tat ive Solutions re l ied upon known physical  models  of sol idif icat ion of media .  Thus,  in 
the 1930's, Hirone [1, 2] undertook the analyt ical  computat ion of the t e m p e r a t u r e  s t r e s s e s  in a solidifying 
m e t a l  on the bas i s  of a model  of l a y e r - b y - l a y e r  growth of an e las t ic  body. 

In l a t e r  invest igat ions,  attention was turned to the cons t ruc t ion  of physica l  models  of the phenomenon;!:- - 
the descr ip t ion  of t he rmop las t i c  flow of c rys ta l l ine  m a t e r i a l s ,  the de te rmina t ion  of conditions fo r  growing 
d i s loca t ion- f ree  c rys t a l s ,  the descr ip t ion  of the p r o c e s s  of c r ack  fo rmat ion  and growth, the formula t ion  of 
physica l  s t rength  conditions fo r  solidifying bodies,  etc. ,  were  taken into account.  The main contr ibution 
to the formula t ion  and solution of many of these  quest ions was made by Indenbom [3-8]. Methods of c o m -  
puting the t e m p e r a t u r e  s t r e s s e s  in solidifying bodies  were  developed in pa ra l l e l  within the f r a m e w o r k  of 
the mechanics  of continuous media ,  and the c l a s s  of phys ica l  models  descr ib ing  the p h a s e - t r a n s f o r m a t i o n  
p r o c e s s  was extended.  A b r i e f  su rvey  of r e s e a r c h  in this a r ea  is p resen ted  in [9]. Kosevich and Tana ta rov  
[10] developed an appropr ia te  analys is  of phase  s t r e s s e s .  

The one-d imens ional  s y m m e t r i c  p rob l em of the e las t ic  s t r e s s  s tate  of a solidifying infinite plate  is 
examined in this  p a p e r  under  the assumpt ion  that the solidifying l a y e r  is p reven ted  f r o m  bending and is 
f r ee  of ex te rna l  f o r c e s .  In con t ras t  to the p reced ing  pape r s ,  the influence of different  heat -exchange con- 
ditions on the plate  surface  being cooled on the dis tr ibut ion of the originat ing s t r e s s e s  is analyzed herein.  
Approximate  resu l t s  a re  obtained. 

1. Let  us cons ider  a semi- inf in i te  domain extending in the x d i rec t ion  and occupied by a fluid at the 
solidification t e m p e r a t u r e  T h. One of the heat -exchange conditions cor responding  to the p r e s e n c e  of a 
constant  t e m p e r a t u r e  or  one dec reas ing  l inear ly  with t ime,  decreas ing  exponentially,  and a lso  varying 
per iodica l ly ,  is rea l ized  on the x =0 sur face  at the initial t ime .  The p r e s e n c e  of a constant  and a l inear ly  
t i m e - v a r y i n g  heat flux and heat exchange according to Newton's law is a lso  cons idered .  

Let us cons ider  the solidifying l aye r  to sa t is fy  the model of an e las t ic  body, and the the rmophys ica l  
and mechanica l  c h a r a c t e r i s t i c s  of the medium to be independent of the t e m p e r a t u r e .  Such assumpt ions  
cor respond  to the H i rone - - Inde r tbom-Ride r  model  of " instantaneous sol idif icat ion."  To s impl i fy  t h e p r o b -  
lem,  let  us take fixing conditions for  which the growing l a y e r  is p reven ted  f r o m  bending, which is real ized,  
in pa r t i cu la r ,  during s y m m e t r i c  sol idif icat ion of the body or  when it is grown on a rigid subs t ra te .  Using 
this model ,  let  us l a t e r  formula te  the p r o b l e m  under  cons idera t ion  within the f r a m e w o r k  of the theory of 
uncoupled the rmoe las t i c i ty ,  by taking into account that the sole nonzero components  of the s t r e s s  tensor  
which sat is fy  the equi l ibr ium, and compat ibi l i ty  equations, and the boundary conditions a re  ayy  = a z z  = 

a(x, t) and the nonzero  s t r a in  t en s o r  components  e y y = a z z = e ( t ) ;  exx=e(x ,  t).  We have 
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a-'-F ~ a ax----~., 

~ O T = p Q ~ t ,  T ( B , t ) = T h ,  x = ~ ;  
ax 

T(x,  0)=Th, 0 ~ x < ~ ;  

T(0, t)=T0 ----const<Tlj 
T(O,t) = To--kt ;  

T ( O , t ) = T o - - A T  cos (wt); 

(0, t) = Th - -  ~--Q [exp (am~t) - -  i]; 

} OT --  ~-~. = q 0 = c ~  x = 0 ;  

__~oT 
" az = qo - -  k t '  x = 0 ;  

~ aT 
- -  -~z = a r [ T ( O , t ) - - T c ] ,  x = 0 ;  

a=~=O, 0 ~ x ~ ,  t > O ,  
t 

a (x, t) = E f {~ - -  aT (x, t)} dt, 
T 

y a ( x , t )  d x = O ,  O ~ x < ~ .  
0 

0 ~ x ~ < ~ ;  

(1.1) 

(1.2) 

(1.3) 
(1.4) 
(J .5) 

.. (1.6) 

(1.7) 

(L.S) 

(1.9) 

(1.1o) 

(1.11) 

(1.12) 

(1.13) 

Here  T is the t e m p e r a t u r e ,  a is the t e m p e r a t u r e  conduction, X is the heat conduction, C is the spe-  
cific heat,  Q is the heat of phase  t rans i t ion ,  p is the density, T h is the sol idif icat ion t empe ra tu r e ,  T O is 
the t e m p e r a t u r e  on the su r face  being cooled, k, m, q0, w a re  constants ,  a T is the hea t - exchange  coefficient,  
t is the t ime,  AT is the ampli tude of the t e m p e r a t u r e  f luctuations,  x is the running coordinate ,  ~ is the 
coordinate  of the phase  boundary,  v is the t ime at which a fluid point is at tached to the phase  boundary, 
E is the e las t ic  modulus,  and a is  the coeff icient  of l inear  expansion.  

The e las t ic  p r o b l e m  (1.11)-(1.13) is solved in a quas is ta t ic  formulat ion by using the t e m p e r a t u r e  
field obtained independently on the sur face  being cooled as the loading function in each p a r t i c u l a r  case  
of heat exchange.  

2. The approx imate  solution of the t he rma l  p r o b l e m  cor responding  to the case  of a per iodica l ly  
varying t e m p e r a t u r e  (1.1)-(1.3), (1.6), is found by following the method elucidated in [11]. Thus, the t em-  
p e r a t u r e  field in the solidifying layer ,  and the law of phase  boundary motion, should be found in genera l  
f o r m  f r o m  the equations 

co 

n=O ( 2 n - l - 2 ) l a n  dtn+ l ( ~ - - X )  2n+2' (2.1) 

l d n T h -  T (0, t) (2.2) 
_ _  ~2~ C .  

n = i  (2n)[ a n d tn  Q 

Limit ing  ou r se lves  to just  the f i r s t  t e r m s  of the s e r i e s  and taking condition (1.6) into account, we obtain 

whe re 

= _ _  6 sin wt~ T a - - T  Q ( t  x'2-~ ] a '  ~ ~ 2 = p 2 ( t  + - w [ - ] 4 a t '  

6 AT C (T h -  To) 
T h -- To ~ 2P~ = O " 

We find the solution of the appropr ia te  e las t ic  p r o b l e m  (1.11)-(1.13) in conformi ty  with [9], by us ingthe  
t e m p e r a t u r e  field p resen ted  above and the law of phase -boundary  motion, 

a(p; wto, O) C(t --v) 
aeq 

1 sin wt~ 0 \ 0 )  
+ 6  ~--~W-oo ) 

(t sin wtoO -{- 25 (cos WtoO - -  cos wto) + .~ In X 
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/ , 5sinwto O\ ] } 
X - ~  + 2 5  j (l+Seosz) cosz dz (2.3) 

/ ~ (isin z \ 
[ i T 5  wt0 . wt. ~i ,  . ' -Z--)z 

where 0=t/t0, 0 -  < 0 -  < 1, t o is the t ime corresponding t ~ the width of the solidifying par t  of the plate.  Hence -  
forth,  a will be understood to be the dimensionless  quantity a .  C ( 1 - v ) / a  EQ. 

Shown in Fig. 1 is the s t r e s s  distr ibution in the solidifying layer ,  computed by means of (2.3), under 
the following conditions: 

p2 0A, 5 = 0.t, wt o t) g 3 = . = --if-, 2) ~, 3) -~-~, 4) 2~. 

It is easy  to see that the s t r e s s  distr ibution originating is sigla-varying. The s t r e s s e s  on the surface  being 
cooled are  hence always negative and tend to infinity. The plast ic  compress ion  domain is evident here .  

If it is considered that 5 = 0 (AT = 0), then the plate surface  being cooled is maintained at the constant 
t empera tu re  T = T O < T h. Under  these conditions, the law of phase-boundary motion reduces  to a simplified 
modification of  the c lass ica l  solution of the Stefan problem (1.1)-(1.4), 

~2 ._~ 2~ (T h - -  To) t .  
pQ 

At the same t ime, the general  solution (2.3) takes a fo rm agreeing with the solution presented  in [9] for  
p<< 1 

a ( p , + )  f ( l n ~ - - 2 + + 2 ) .  (2.4) 

Curve 1 in Fig. 2 cor responds  to this s t r e s s  distr ibution under  the conditions p2=0, 1. The coordi -  
nate of the maximal  tensi le  s t r e s s e s  in the solidifying l aye r  x m follows f rom the condition 0x~= 0 and 
equals Xm/~ ---0.5 in the case  (2.4). 

3. In the case of a l inear ly  decreas ing  tempera ture ,  the approximate solution of the thermal  problem 
(1.1)-(1.3), (1.5) is found f rom the general  solutions (2.1), (2.2) under const ra ints  analogous to those taken 
in Sec. 2, 

T h - -  T = 2p~ Q ( i - - + ) ] / i - - m 2 ~  2, 

~2 = p .. . 4at + 2p2m2a't 2, 

(3.1) 

(3.2) 
kC Th --  To 

where rn 2 -= -- - - C .  2p2a--- ~ ,  2p  ~ Q 

Let us also note that analogous heat-exchange conditions are  also real ized for  the per iodic  cooling 
mode in the plate solidification stage when wt0~ ~' /2(2n-1),  n = 1, 2 . . . . .  Using (3.1), (3.2), let  us write 
the solution of the corresponding e las t ic  problem,  

o (p, rn~, + )  = p~ [2 ( V t -  m2~i ( t -  ~ ) -  2(V] -~- m2~ 2 -  

x~ ( t - - ] ' r ~ ( l  " ~ V t - - m ' ~ ' ~ t ) ]  

-- ]//1 -- m~2 ~)--"2-1 In --(t . . . .  + ] r ~ ) ( t - -  ]//t--m~g~ z'-"--'-"---"7~) " 

For  m2~2<< 1 this solution can be simplified:  
__~t2 2 X2 I- 

0 [ z 2 x m2~2 (p, rn~,-~-)=p2 ln-~---- ~ + 2 +  + ( t - - T ] - - ~  - r e x '  t .  4 m~ " ] 4 _ m 2 ~  ~ "J" (3.3) 

If m = 0, then (3.3) agrees  with (2.4). The coordinate of the maximal tensi le  s t r e s s e s  for  the s im-  
plified distr ibution (3.3) follows f rom 

+ m ~  {t__ 2 x,~ + = 2 .  
m s 2 ;xm 

The s t r e s s  distr ibution (3.3) is p resen ted  in Fig. 2 (curve 2) for  p2=0.1; m~ =0.705. 
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4. The exact solution of the thermal  problem in the case of an exponentially decreasing temperature  
(1.1)-(1.3), (1.7) is according to [12] 

~-/12a$, /rt ~ const. 

The solution of the corresponding elast ic  problem resul ts  in the following thermal  s t ress  distr ibu- 
tion in the solidifying layer :  

(4.1) 
c (rn~, + ) ~  exp[rn~ ( i -  + ) ] - - t - - l n  + + E,(m~ + ) -  E~ (m~), 

9 
where El(y) = j" e x p ( Y ) d y .  

- - 7 -  

We have on the plate surface being cooled 

c(rn~, 0)=exp(rn~)--i+Cl+ln(m~)--E~(m~) , 

where C 1 =.0.577 is the Euler  constant. 

For smal l  values of the pa rame te r  m~ << 1 we have a(m~, 0 ) ~  1/4(m~) 2, and, therefore,  the greates t  
tensile s t r e s ses  are found on the plate surface being cooled. 

5. The approximate solution of the problem corresponding to the case of a constant heat flux (1.1)- 
(1.3), (1.8) can be found by again returning to the method elucidated in [11]. The temperature  field is 
hence represented by (2.1), and the law of phase-boundary motion is found f rom the equation 

~2~+i ma.  (5.1) 
t 

n=O an (2n + t)! dt n+l 

Limiting ourselves to two te rms  of the ser ies  in (2.1), and to one in (5.1), we obtain 

qoC - = m a t ,  m -= ~,Q . 

The simplified t empera tu re  field, used in the preceding section when m~[ 1 -  (x/~)] << 1 ,y ie lds these  
solutions of the thermal  problem. 

The solution of the elast ic  problem for  this case is 

: ( + ) r n ' ~ '  ( x x') (5.2) 
cr m~, = - - T  t - - , I - ~ - + 3 - ~ - .  
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The g r e a t e s t  tensile s t r e s s e s  a(m~, 0)= 1/4(m~) 2 originate on the plate sur face  being cooled (x =0). 
The coordinate  of the m a x i m u m  c o m p r e s s i v e  s t r e s s e s  co r r e sponds  to the quantity Xm/~ =2/3 .  

The s t r e s s  dis t r ibut ion found by means  of (5.2) for  m~ = 0.705 is shown in Fig. 2 (curve 3). 

6. We find the approximate  solution of the the rmal  p rob lem in the case  of a l inear ly  decreas ing  heat 
flux (1.1)-(1.3), (1.9) by using (2.1) and (5.1) analogously to the solution examined in the p rev ious  section.  
We have 

"" ~ ~ ~ ft - ~ ~ ~;~1 
( k,) q~ 

~ = mat  t - -  ~o  , ra --  -~Q . 

The solution of the e las t ic  p rob l em  yields  the the rma l  s t r e s s  dis t r ibut ion in the solidifying layer ,  

m'~" [ i  - -  (~(m~, ~)=--nm~ ~(.t- V~-)V l--n,n~ + -T- 
- -4 (1  - -  nm~) T + - - 2 n m ~  + ' 0 -  + 9 ~3]j, (6.1) 

where n = 2kQ2P2a %3 
The m a x i m u m  tens i le  s t r e s s e s  

o ( m ~ ,  o) = m~--~ ( t - - S n m ~ )  

originate  on the plate sur face  being cooled. 

In the l imit  case  n = 0  (k=0) the solution (6.1) ag rees  with the solution (5.2). The s t r e s s  dis t r ibut ion 
computed by means  of (6.1) fo r  m~ =0.333 at n=0 .1  is shown in Fig. 2 (curve 4). 

7. In the case  of heat exchange according to a Newton law, we find the t e m p e r a t u r e  field and law of 
phase -boundary  motion by solving the the rma l  p r o b l e m  (1.1)-(1.3), (1.10). To do this,  we again use the 
resu l t s  f r o m  [12]. The t e m p e r a t u r e  field is given by (2.1), and we have the following equation for  the law 
of phase-boundary  motion:  

s t dn[~2n ~ ~2n-I ] T h _ _ T e  (7.1) 
7 ~ [(2n)~ + ~ -  ( 2n - , ) t  = - W -  c .  

Limit ing ourse lves  to the f i r s t  t e r m s  of the expansions (2.1) and (7.1), we obtain 

2 4 p M t m  2 - -  t ) ,  ~' = 4P ~at -- ~- ( V  i + 

T h - -  T c ot T 
2p  2 -- Q C, m = ---2-. 

The solution of the e las t ic  p rob lem for  this case  reduces  to the following t e m p e r a t u r e  s t r e s s  d i s t r ibu-  
tion in the solidifying l aye r :  

It follows f r o m  (7.2) that c o m p r e s s i v e  s t r e s s e s  whose magnitude equals 

o'(p, IreS, O)= p2[ rn.~ ] 

originated on the plate sur face  being cooled, and the value of the maximal  tens i le  s t r e s s  coordinate  in the 
solidifying l a y e r  is de te rmined  by the re la t ionship 

The s t r e s s  dis t r ibut ion computed by means  of (7.2) fo r  p 2  = 1.0 and m~ = 0.333 is p resen ted  in Fig. 2 
(curve 5). 
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8. It follows f r o m  the resu l t s  p r e sen t ed  that the heat -exchange conditions substant ial ly affect  the 
nature  of the t e m p e r a t u r e  d is t r ibut ion in the solidifying plate and the assoc ia ted  law of phase-boundary  
motion.  This  has a num ber  of .consequences ;  p r i m a r i l y ,  the p r e sence  of quali tat ive changes in the o r ig i -  
nating t h e r m a l  s t r e s s  dis tr ibut ion.  In this sense ,  the heat -exchange conditions cons idered  can be separa ted  
into two groups  according  to a c r i t e r i o n  governing qual i ta t ively identical  p i c tu res  of the s t r e s s  state of 
the growing pla te .  

Among the f i r s t  should be the ease  of heat exchange according to f he laws ~!.4)-(1.6), (1.10). The 
effect ive s t r e s s  d is t r ib tu ion under  these  conditions is cha rac t e r i zed  by the p r e s e n c e  of a compress iof i  
domain  at the sur face  being cooled, where O - I x = , - - - o o  Here  the mos t  genera l  case  is a per iodic  t e m p e r -  
a ture  mode at the plate  sur face  being cooled, which co r re sponds  to (1.6), in which the heat -exchange con- 
ditions with a constant  t e m p e r a t u r e  and t e m p e r a t u r e s  decreas ing  and increas ing  l inear ly  according to a 
parabol ic  law a re  contained as p a r t i c u l a r  c a s e s .  In this  connection, let  us examine some s ingular i t ies  in 
the s t r e s s  dis t r ibut ion which a re  c h a r a c t e r i s t i c  fo r  the per iodic  cooling mode.  Thus, the s t r e s s  s tate  of 
the plate at the s t a r t  of the per iod  of t e m p e r a t u r e  var ia t ion  is cha rac t e r i zed  by two zones (see Fig. 1, 
curve 1): one growing at the phase  boundary and a c o m p r e s s i o n  zone at the sur face  being cooled. No 
quali tat ive changes in the s t r e s s  dis t r ibut ion (curve 2) or iginate during a t ime  equal to half the per iod 
of t e m p e r a t u r e  var ia t ion,  as compared  with the beginning of the per iod  although the maximal  tens i le  
s t r e s s e s  grow. A s t r e s s  red is t r ibut ion  with the fo rmat ion  of a small  c o m p r e s s i o n  domain at the phase  
boundary (curve 3) occu r s  in the next q u a r t e r  of the per iod.  Finally, the p ic ture  changes abruptly during 
the l a s t  qua r t e r ,  the c o m p r e s s i o n  zone originat ing broadens  and shif ts  to the middle  l a y e r  of the sol idify-  
ing p a r t  of the pla te ,  and a na r row,  growing domain with s t r e s s e s  of cons iderable  magnitude appears  nea r  
the phase  boundary.  As a whole, a l te rna t ion  of e las t ic  c o m p r e s s i v e  and tens i le  zones whose width and 
max ima l  effect ive s t r e s s e s  depend on the magnitude of the p a r a m e t e r  5, is c h a r a c t e r i s t i c  of the stres,~ 
s tate  at this  t ime .  For  smal l  6 the influence of the t e m p e r a t u r e  f luctuations on the s t r e s s  dis t r ibut ion 
is negligible.  As ~ > 1 grows,  the or iginat ing s t r e s s e s  turn  out to be propor t iona l  to 6. No quali tat ive 
changes in the s t r e s s  s tate  of the growing plate  originate fo r  these changes in the quantity 6. Var ia t ion  
of the o ther  ex te rna l  p a r a m e t e r ,  the f requency of the t e m p e r a t u r e  f luctuations,  r e su l t s  in the following 
s ingular i t i es :  the s t r e s s  dis t r ibut ion tends to the exp re s s ion  (2.4) in the case  w ~ ~o and the number  of 
c o m p r e s s i v e  and tens i le  zones in the solidifying l aye r  grow correspondingly  for  w ~ .  

The case  of heat exchange accord ing  to a Newton law which abuts the f i r s t  group is c h a r a c t e r i s t i c  
in that  the s t r e s s  d is t r ibut ion (7.2) tends to the dis tr ibut ion (2.4) as the hea t - t r an spo r t  coefficient  grows 
(m ~oo, i .e. ,  when ideal contact  conditions between the sur face  being cooled and the surrounding medium 
hold). On the o ther  hand, no s t r e s s e s  or iginate  for  m =0. 

Real iza t ion  of the hea t -exchange  conditions cor responding  to the laws (1.7)-(1.9) yields  another  
qual i tat ively coincident p ic ture  of the s t r e s s  distr ibution in the solidifying plate .  Here  the tensile s t r e s s  
zone adjoins the cooled sur face ,  and a c o m p r e s s i v e  domain or ig inates  at the phase  boundary.  It is cha r -  
ac t e r i s t i c  that the tensi le  s t r e s s e s  on the pla te  sur face  being cooled are  finite.  The mos t  genera l  case 
is hence that  with the exponential ly dec reas ing  t e m p e r a t u r e  (4.1). 
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